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One-shot introduction to Quantum Computing
Terms and conditions apply!



One Qubit!

I We shall deal with qubits (two-level systems)

I Can be represented as a complex linear combination of two
orthogonal basis vectors

|0〉 =

[
1
0

]
|1〉 =

[
0
1

]

|ψ〉 = α |0〉+ β |1〉

such that

|α|2 + |β|2 = 1

I Measurement destroys quantum information!



Multiple qubits!

I Basis states become tensor products of the single qubit basis
states.

I For two-qubit states, |00〉 = |0〉 ⊗ |0〉, |01〉, |10〉, |11〉
I Example:

1√
2

(|00〉+ |11〉)

I Entanglement: states that are not product states



Evolution, Gates!

I Unitary matrices!

I Therefore, linear, reversible (will be used soon!)

I Examples:

H |0〉 =
1√
2

(|0〉+ |1〉) H |1〉 =
1√
2

(|0〉 − |1〉)

X |0〉 = |1〉 X |1〉 = |0〉
Z |0〉 = |0〉 Z |1〉 = (−1) |1〉

I Multi-qubit gates: CNOT, Flips second qubit if first qubit is
1, does nothing if not.

I You get circuits when gates act one after the other.



An example of a circuit1

|00〉 → 1√
2

(|0〉+ |1〉)⊗ |0〉 → 1√
2

(|00〉+ |10〉)→ 1√
2

(|00〉+ |11〉)

1Wikipedia: https://commons.wikimedia.org/wiki/File:
The_Hadamard-CNOT_transform_on_the_zero-state.png

https://commons.wikimedia.org/wiki/File:The_Hadamard-CNOT_transform_on_the_zero-state.png
https://commons.wikimedia.org/wiki/File:The_Hadamard-CNOT_transform_on_the_zero-state.png


Parametrized Gates

I Remember title of the talk?

I Parametrized quantum circuits.

I X-Rotation, Z-Rotation

RX(θ) =

[
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

]
RZ(θ) =

[
exp(−iθ/2) 0

0 exp(−iθ/2)

]
I RX(π) = −iX, RZ(π) = −iZ



Why do people care?

I Several speed-ups (∗) over classical algorithms are already
known

I polynomial ‘time’ prime factoring (Shor’s algorithm):
I Hardness assumption of prime factoring is the basis for RSA

cryptosystem

I sub-linear search (Grover’s algorithm)
I Unstructured search has Θ(n) complexity; Grover search has

O(
√
n) complexity



Half-shot introduction to QML



Many flavors

I Speeding up classical machine learning algorithms using
quantum algorithms for linear algebra: Harrow-Hassidim-Lloyd
for solving linear equations, singular value estimation etc.

I Problems that are classically hard, eg Traveling Salesman,
QAOA (quantum approximate optimization algorithm) by
Farhi-Goldstone-Gutman

I Solving quantum problems, eg quantum state tomography
I Running famous quantum algorithms on near-term quantum

hardware
I Decoherence, low depth and other issues.



Parametrized quantum algorithms

Key idea: Let’s use a parametrized circuit, optimize the
parameters, and use the trained circuit to solve the problem.

Typically lower depth circuits for many important problems.



Computing gradients

I In many cases, the same quantum circuit can be used to
compute the function and the gradient of the function

I Uses the parameter shift rule

I This is a generalization of...

f (x) = sin(x)⇒ f ′(x) =
1

2
sin
(
x +

π

2

)
− 1

2
sin
(
x − π

2

)



Parametrized quantum algorithm for quantum
state tomography



What is quantum state tomography?

Given several copies of a quantum state, learn (a classical
description of) the state.

|ψ〉 = α |0〉+ β |1〉

We want to learn α and β.

Metric is fidelity, in this case the inner product between the
target and the reconstruction. We want this to be close to 1.



A very simple idea2

I Learn the parameters of a circuit that maps the state to a
known state

I Then, use the reverse of the circuit to find what the original
state was

U |ψ〉 = |0〉 ⇒ |ψ〉 = U† |0〉

I Single-Shot Measurement Learning

2Sang Min Lee, Jinhyoung Lee, and Jeongho Bang. “Learning unknown
pure quantum states”. In: Phys. Rev. A 98 (5 Nov. 2018), p. 052302.



Single-Shot Measurement Learning

Run the circuit, measure the obtained state, then update the
parameters

Parameter update rule is given by

M
(n+1)
S ,p(n+1) =

{
M

(n)
S + 1,p(n) if success

0,p(n) + α(M
(n)
S + 1)−βr if failure

Keep doing this until M
(n)
S = Mstopping

Gradient free!



Simulation results (target state)



Simulation results (obtained state)



Simulation results

I Fidelity was 0.97

I Doesn’t work for multiple qubits, unless it’s product state



Different approach

I We can use gradient-based methods directly, using the
parameter shift rule to compute gradients.

I Can use any of your favourite optimizers - gradient descent,
Adagrad, Adam...



Simulation results 3 qubits (target state)



Simulation results 3 qubits (obtained state) [Fidelity - 0.999]



Simulation results 4 qubits (target state)



Simulation results 4 qubits (obtained state) [Fidelity - 0.867]



Further comments

I Fidelity starts going down for more qubits

I Most likely reason - barren plateaus

I To try: other non-gradient based optimization methods, eg
particle swarm optimization



Thanks!
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