Shared Information for a Markov Chain on a Tree

Sagnik Bhattacharya (2), Prakash Narayan ECE-ISR@UMD

ISIT 2022

July 1, 2022

#1: Capturing dependence among multiple rvs – *Shared Information*

How to capture dependence among multiple rvs?

$$SI(X_{\mathcal{M}}) = \min_{2 \le k \le m} \min_{\pi = (\pi_u, u = 1, \dots, k)} \frac{1}{k - 1} D(P_{X_{\mathcal{M}}} \parallel \prod_{u = 1}^k P_{X_{\pi_u}})$$

$$SI(X_{\mathcal{M}}) = \min_{2 \le k \le m} \min_{\pi = (\pi_u, u = 1, \dots, k)} \frac{1}{k - 1} D(P_{X_{\mathcal{M}}} \parallel \prod_{u = 1}^k P_{X_{\pi_u}})$$

$$= \min_{2 \le k \le m} \min_{\pi = (\pi_u, u = 1, \dots, k)} \frac{1}{k - 1} \left[\sum_{u = 1}^k H(X_{\pi_u}) - H(X_{\mathcal{M}}) \right]$$

$$SI(X_{\mathcal{M}}) = \min_{2 \le k \le m} \min_{\pi = (\pi_u, u = 1, \dots, k)} \frac{1}{k - 1} D(P_{X_{\mathcal{M}}} \parallel \prod_{u = 1}^k P_{X_{\pi_u}})$$

$$= \min_{2 \le k \le m} \min_{\pi = (\pi_u, u = 1, \dots, k)} \frac{1}{k - 1} \left[\sum_{u = 1}^k H(X_{\pi_u}) - H(X_{\mathcal{M}}) \right]$$

$$SI(X_{\mathcal{M}}) = \min_{2 \le k \le m} \min_{\pi = (\pi_u, u = 1, \dots, k)} \frac{1}{k - 1} D(P_{X_{\mathcal{M}}} \parallel \prod_{u = 1}^k P_{X_{\pi_u}})$$

$$= \min_{2 \le k \le m} \min_{\pi = (\pi_u, u = 1, \dots, k)} \frac{1}{k - 1} \left[\sum_{u = 1}^k H(X_{\pi_u}) - H(X_{\mathcal{M}}) \right]$$

Some special cases

• Two rvs

$$SI(X_1, X_2) = \text{mutual information } I(X_1 \wedge X_2)$$

Some special cases

Two rvs

$$SI(X_1, X_2) = \text{mutual information } I(X_1 \wedge X_2)$$

- Three rvs
 - Minimum of

$$I(X_1 \land X_2, X_3) \qquad I(X_2 \land X_1, X_3) \qquad I(X_3 \land X_1, X_2)$$

$$\frac{1}{2} \left[H(X_1) + H(X_2) + H(X_3) - H(X_1, X_2, X_3) \right]$$

- Secret key capacity of a multiterminal source model
 - [Csiszár-Narayan, 2004]

- Secret key capacity of a multiterminal source model
 - [Csiszár-Narayan, 2004]
 - [Chan, 2008]
 - [Chan-Zheng, 2016]
 - [Chan, 2011]

- Secret key capacity of a multiterminal source model
 - [Csiszar-Narayan, 2004]
 - [Chan, 2008]
 - [Chan-Zheng, 2016]
 - [Chan, 2011]
- Hypothesis Testing
 - [Tyagi-Watanabe, 2016]

- Secret key capacity of a multiterminal source model
 - [Csiszar-Narayan, 2004]
 - [Chan, 2008]
 - [Chan-Zheng, 2016]
 - [Chan, 2011]
- Hypothesis Testing
 - [Tyagi-Watanabe, 2016]
- Extensively studied in [Chan-Bashabsheh-Ebrahimi-Kaced-Liu, 2015]

- Secret key capacity of a multiterminal source model
 - [Csiszar-Narayan, 2004]
 - [Chan, 2008]
 - [Chan-Zheng, 2016]
 - [Chan, 2011]
- Hypothesis Testing
 - [Tyagi-Watanabe, 2016]
- Extensively studied in [Chan-Bashabsheh-Ebrahimi-Kaced-Liu, 2015]
- Clustering
 - [Chan-Bashabsheh-Zhou-Kaced-Liu, 2016]

Shared information - computation

$$SI(X_{\mathcal{M}}) = \min_{2 \le k \le m} \min_{\pi = (\pi_u, u = 1, \dots, k)} \frac{1}{k - 1} D(P_{X_{\mathcal{M}}} \parallel \prod_{u = 1}^k P_{X_{\pi_u}})$$

- When underlying pmf is known, there is an efficient algorithm to compute SI
 - Submodular optimization [CBEKL15]

Shared information - computation

$$SI(X_{\mathcal{M}}) = \min_{2 \le k \le m} \min_{\pi = (\pi_u, u = 1, \dots, k)} \frac{1}{k - 1} D(P_{X_{\mathcal{M}}} \parallel \prod_{u = 1}^k P_{X_{\pi_u}})$$

- When underlying pmf is known, there is an efficient algorithm to compute SI
 - Submodular optimization [CBEKL15]
- When pmf is unknown, estimation involves prohibitively massive search space.

Shared information - computation

$$SI(X_{\mathcal{M}}) = \min_{2 \le k \le m} \min_{\pi = (\pi_u, u = 1, \dots, k)} \frac{1}{k - 1} D(P_{X_{\mathcal{M}}} \parallel \prod_{u = 1}^k P_{X_{\pi_u}})$$

- When underlying pmf is known, there is an efficient algorithm to compute SI
 - Submodular optimization [CBEKL15]
- When pmf is unknown, estimation involves prohibitively massive search space.

Want: simpler forms in special cases

#2: Markov Chain on a Tree (MCT)

#3: SI in an MCT

Shared information – simpler forms in special cases

$$SI(X_{\mathcal{M}}) = \min_{2 \le k \le m} \ \min_{\pi = (\pi_u, u = 1, \dots, k)} \ \frac{1}{k - 1} D(P_{X_{\mathcal{M}}} \parallel \prod_{u = 1}^k P_{X_{\pi_u}})$$

- Upper bound is clear*
 - Choose that special partition

Shared information – simpler forms in special cases

$$SI(X_{\mathcal{M}}) = \min_{2 \le k \le m} \min_{\pi = (\pi_u, u = 1, \dots, k)} \frac{1}{k - 1} D(P_{X_{\mathcal{M}}} \parallel \prod_{u = 1}^k P_{X_{\pi_u}})$$

- Upper bound is clear*
 - Choose that special partition
- Need: lower bound
 - Original proof from secret-key capacity [Csiszár-Narayan, 2004]
 - Different in spirit from [Chan-Bashabsheh-Zhou-Kaced-Liu, 2016]
 - Easy* when atoms of the partition are connected

Connected atoms

Idea: reduce nonconnected atom case to this case

- Must find the edge with the lowest mutual information
 - Reduces to best arm identification [Audibert-Bubeck-Munos, 2010]

- Must find the edge with the lowest mutual information
 - Reduces to best arm identification [Audibert-Bubeck-Munos, 2010]
- Proposal: a **correlated** bandits algorithm

- Must find the edge with the lowest mutual information
 - Reduces to best arm identification [Audibert-Bubeck-Munos, 2010]
- Proposal: a correlated bandits algorithm
 - For every edge, sample both random variables at the same time
 - Uniform sampling: each pair is sampled equally often

- Must find the edge with the lowest mutual information
 - Reduces to best arm identification [Audibert-Bubeck-Munos, 2010]
- Proposal: a correlated bandits algorithm
 - For every edge, sample both random variables at the same time
 - Uniform sampling: each pair is sampled equally often
- Key challenge: estimators for mutual information are always biased.

MI estimation

• The empirical mutual information [Goppa, 1975]

$$\mathbf{I}_{\mathsf{EMI}}^{(n)}(\boldsymbol{x} \wedge \boldsymbol{y}) = \mathbf{H}(P_{\boldsymbol{x}}^{(n)}) + \mathbf{H}(P_{\boldsymbol{y}}^{(n)}) - \mathbf{H}(P_{\boldsymbol{x}\boldsymbol{y}}^{(n)})$$

MI estimation

• The empirical mutual information [Goppa, 1975]

$$\mathbf{I}_{\mathsf{EMI}}^{(n)}(\boldsymbol{x} \wedge \boldsymbol{y}) = \mathbf{H}(P_{\boldsymbol{x}}^{(n)}) + \mathbf{H}(P_{\boldsymbol{y}}^{(n)}) - \mathbf{H}(P_{\boldsymbol{x}\boldsymbol{y}}^{(n)})$$

• [Paninski, 2003]

$$-\log\left(1+\frac{|\mathcal{X}|-1}{n}\right)\left(1+\frac{|\mathcal{Y}|-1}{n}\right) \leq \operatorname{Bias}(\operatorname{I}_{\mathsf{EMI}}^{(n)}(\boldsymbol{X} \wedge \boldsymbol{Y})) \leq \log\left(1+\frac{|\mathcal{X}|\,|\mathcal{Y}|-1}{n}\right)$$

MI estimation

• The empirical mutual information [Goppa, 1975]

$$\mathbf{I}_{\mathsf{EMI}}^{(n)}(\boldsymbol{x} \wedge \boldsymbol{y}) = \mathbf{H}(P_{\boldsymbol{x}}^{(n)}) + \mathbf{H}(P_{\boldsymbol{y}}^{(n)}) - \mathbf{H}(P_{\boldsymbol{x}\boldsymbol{y}}^{(n)})$$

• [Paninski, 2003]

$$-\log\left(1 + \frac{|\mathcal{X}| - 1}{n}\right)\left(1 + \frac{|\mathcal{Y}| - 1}{n}\right) \le \operatorname{Bias}(\operatorname{I}_{\mathsf{EMI}}^{(n)}(\boldsymbol{X} \wedge \boldsymbol{Y})) \le \log\left(1 + \frac{|\mathcal{X}||\mathcal{Y}| - 1}{n}\right)$$

 Using McDiarmid's inequality, similar to [Antos-Kontoyiannis, 2001]

$$P_{XY}\left(\mathbf{I}_{\mathsf{EMI}}^{(n)}(\boldsymbol{X}\wedge\boldsymbol{Y}) - \mathbb{E}_{P_{XY}}\left[\mathbf{I}_{\mathsf{EMI}}^{(n)}(\boldsymbol{X}\wedge\boldsymbol{Y})\right] \geq \epsilon\right) \leq \exp\left(-\frac{2n\epsilon^2}{36\log^2 n}\right)$$

$$P_{X_{\mathcal{M}}}\left(\hat{e}_{N}(X_{\mathcal{M}}^{N}) \neq (\bar{i}, \bar{j})\right) \leq 2\left|\mathcal{E}\right| \exp\left(\frac{-(N/\left|\mathcal{E}\right|)\Delta_{1}^{2}}{648\log^{2}(N/\left|\mathcal{E}\right|)}\right)$$

if

$$N > |\mathcal{E}| \max \left\{ \frac{|\mathcal{X}|^2 - 1}{2^{\Delta_1/3} - 1}, \frac{|\mathcal{X}| - 1}{2^{\Delta_1/6} - 1} \right\},$$

Number of edges

$$P_{X_{\mathcal{M}}}\left(\hat{e}_{N}(X_{\mathcal{M}}^{N}) \neq (\bar{i}, \bar{j})\right) \leq 2 |\mathcal{E}| \exp\left(\frac{-(N/|\mathcal{E}|)\Delta_{1}^{2}}{648 \log^{2}(N/|\mathcal{E}|)}\right)$$

if

$$N > |\mathcal{E}| \max \left\{ \frac{|\mathcal{X}|^2 - 1}{2^{\Delta_1/3} - 1}, \frac{|\mathcal{X}| - 1}{2^{\Delta_1/6} - 1} \right\},$$

Difference between the smallest and second-smallest MIs

Number of edges
$$P_{X_{\mathcal{M}}}\left(\hat{e}_{N}(X_{\mathcal{M}}^{N}) \neq (\bar{i}, \bar{j})\right) \leq 2 \left|\mathcal{E}\right| \exp\left(\frac{-(N/\left|\mathcal{E}\right|)\Delta_{1}^{2}}{648 \log^{2}(N/\left|\mathcal{E}\right|)}\right)$$

if

$$N > |\mathcal{E}| \max \left\{ \frac{|\mathcal{X}|^2 - 1}{2^{\Delta_1/3} - 1}, \frac{|\mathcal{X}| - 1}{2^{\Delta_1/6} - 1} \right\},$$

Difference between the smallest and second-smallest MIs

Number of edges
$$P_{X_{\mathcal{M}}}\left(\hat{e}_{N}(X_{\mathcal{M}}^{N}) \neq (\bar{i}, \bar{j})\right) \leq 2 \left|\mathcal{E}\right| \exp\left(\frac{-(N/\left|\mathcal{E}\right|)\Delta_{1}^{2}}{648 \log^{2}(N/\left|\mathcal{E}\right|)}\right)$$

if

$$N > |\mathcal{E}| \max \left\{ \frac{|\mathcal{X}|^2 - 1}{2^{\Delta_1/3} - 1}, \frac{|\mathcal{X}| - 1}{2^{\Delta_1/6} - 1} \right\},$$

Reduces bias below Δ_1

Key takeaways

- New proof for SI in an MCT
- Best-arm identification using biased estimators

Directions for future work

- Better estimators lead to better bounds
- Lower bounds for best-arm identification using biased estimators