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Question

How do we find bounds on the size of codes for discrete metrics
other than the Hamming metric? What about the Lee metric?



What can we do with the answer?
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Notation - The volume of a Lee ball of radius £ and in a code with
blocklength 7 is given by \/;f(”)
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What can we do with the answer?

Notation - The volume of a Lee ball of radius £ and in a code with
blocklength 7 is given by \/;f(n)

e Chiang and Wolf! gave the following bounds for the Lee

metric (n) 1—R(d n 1—RI(d
Vil e < 1= R(d) Vd( ) S 11— R(d)
Hamming Bound Gilbert-Varshamov Bound

e 50 ifweknow Vtw we will also know bounds on R(d)
e Berlekamp? also gave the EB bound for the Lee metric

1.  J.C-Y.Chiangand J. K. Wolf, “On channels and codes for the Lee metric” (1971)
2. R. Berlekamp, Algebraic Coding Theory - Revised Edition (2015)
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So the questionis to figure out V,
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e Chiangand Wolf? gave the following expression.

1=0

n ~1d
Vr< )(Z) _ (Zz’!dziA( )(z))
2=0

3. J.C.-Y.Chiangand J. K. Wolf, “On channels and codes for the Lee metric” (1971)
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S0 the question is to figure out Vt(”)

e Chiang and Wolf® gave the following expression

n ~1d
v, )(Z) = (Z 5@1‘1( >(2))
2=0

1=0
which is mathematically intractable.
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S0 the question is to figure out Vt(")

e Chiang and Wolf® gave the following expression

n ~1d
Vr< )(Z) _ (Zi!dziA( )(z))
2=0

1=0
which is mathematically intractable.

e Roth?* gave the following expression for radius t < ¢/2
W =322() ()

3. J.C.-Y.Chiangand J. K. Wolf, “On channels and codes for the Lee metric” (1971)
4. R. Roth, Introduction to Coding Theory (2006)
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S0 the question is to figure out Vt(”)

e Chiang and Wolf® gave the following expression
V(=) 5 (Z j,jzz-A%))
=0 2=0
which is mathematically intractable.

e Roth?* gave the following expression for radius t < ¢/2

i -22() ()

But the parameter regime is too small.

3. J.C.-Y.Chiangand J. K. Wolf, “On channels and codes for the Lee metric” (1971)
4. R. Roth, Introduction to Coding Theory (2006)
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Our contribution(s)

e \We use the generating function for a metric and Sanov's
theorem to find the volume of a sphere of given radius.
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Our contribution(s)

e \We use the generating function for a metric and Sanov's
theorem to find the volume of a sphere of given radius.

e |treducestothe known results for the Hamming metric

e [tallowsustofind bounds on the rate for the Lee metric
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Our Methods



A = [z € g dist(C,z) = t}]

Ref - R. Berlekamp, Algebraic Coding Theory - Revised Edition (2015)
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A = [z € g dist(C,z) = t}]

t
7=0

Ref - R. Berlekamp, Algebraic Coding Theory - Revised Edition (2015)

(n)
4;
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The Generating Function

e The generating function for the Ag.”)

A(n)(z> _ ZA;n)Zj
J

Ref - R. Berlekamp, Algebraic Coding Theory - Revised Edition (2015)
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The Generating Function

e Because the distance function is additive over the n
coordinates...

e [he generating functionis multiplicative and A(”)(z)
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The Generating Function

e Because the distance function is additive over the n
coordinates...

e [hegenerating function is multiplicative and A(”)(z) = [A<1)(z)]”

o AU(z) gives the weights for a single symbol only.

1
A(l)(z) — 1420422 4. 22T

( ) (q ) Lee metric for odd g

g-ary Hamming Metric
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The Generating Function

e Because the distance function is additive over the n
coordinates...

e [he generating functionis multiplicative and A(”)(z) = [A<1)(z)]”
o AW(z) gives the weights for a single symbol only.

(1)) — 2 g—1
A<1)(z):1—|—(q—1)z AN (2)=14224+22+ ...+ 2272

Lee metric for odd g

g-ary Hamming Metric —2

A<1)(z) = 14204225 42T 2

Lee metric for even g

Ref - R. Berlekamp, Algebraic Coding Theory - Revised Edition (2015) 28



New Question

How do we find

s
J
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Involving a probability distribution
We start by dividing both sides of A" ZA ) by q"
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We start by dividing both sides of A" ZA by ¢ to get

Al

~ N _J Z B§n>z]
J J

qn
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Involving a probability distribution

We start by dividing both sides of A"

AW (2)

A.
Sy
J

ZA

by ¢ to get

— Z B§”> -]
J
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Involving a probability distribution

Say we start from
—1
A<1)(z) 142422 2T
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Involving a probability distribution

Say we start from
—1
Am(z) 142422 2T

Dividing by g, we get
AV 1 2 2, 2 g1

= —4+—z+-2"+...+-2 2
q 9 9 9 q
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Involving a probability distribution

Say we start from

1
/40)(z):::1-+-2z-+—222-+...-+-22g§_

Dividing by g, we get

AV 1 2 2, 2 g-1
=—-—4+—-2z+-2"+...+—-2 2
q q (g q q

Which defines a discrete random variable X that takes value O
w.p. 1/g, 1 w.p. 2/qg and so on.
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Involving a pro

AW )"

q

:)ability distribution

Z ZJ—ZB
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Involving a pro aability distribution

A<1)(z)_ Z zj ) Z B

q

The Bé”)give the probability that the sum of n i.i.d. samples
drawn according to X add up to
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Sanov's Theorem

Theorem 1 (Sanov’s Theorem). Let X1, X5, ..., X, be i.i.d.
~ Q(x). Let E C P be a set of probability distributions and P
be the set of all types from the n realisations X1, Xo, ..., X,.
Then,

Q™(E) = QUENP,) < (n+1)*l2nP#lIR)

where |X| is the support of each X;, D(-||-) is the K-
L divergence, Q™(E) is the probability that the empirical
distribution obtained from an n-long sample X1, ..., X, each
~ Q(z) belongs to the set E, and

P* = grp miin D P
2 min D(PQ)
is the distribution in E that is closest to () in relative entropy.

If we also have that the set E is the closure of its interior,
then we also have the result

1 *
~logQ"(E) - ~D(P*]|Q)
Retaining terms upto first order in the exponent, we have

9~nD(P*IIQ)—o(n) < gr(E) < 2~ "P(P*IIQ)+o(n)

Sanov, I. N. (1957) "On the probability of large deviations of random variables"
Cover, Thomas M.; Thomas, Joy A. (2006). Elements of Information Theory (2 ed.)



Using Sanov's theorem - finding E

The natural choice while calculating the kU coefficient is the set

of all distributions with mean less than or equal to k.
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Sanity Check - Hamming metric

The Hamming metric does not require convex optimisation. The
random variable in the Hamming case is Bernoulli, and the KL
divergence minimising distribution is not hard to find. The result
is familiar.

MHa(p)—o(n) < 1/19(7?) < ¢"Ha(p)+o(n)
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Sanity check for the Hamming metric

1.0 1

0.8 1

0.2 A

0.0 1

Binary Hamming - Comparison
e Gilbert-Varshamov bound (new)
— Gilbert-Varshamov bound (old)

A Hamming bound (new)

—— Hamming bound (old)
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Convex Optimisation

In general, we need to use convex optimisation to find P~
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Convex Optimisation

In general, we need to use convex optimisation to find P~

Strong duality holds for the problem, so any solution to the dual
implies an upper bound for the primal.
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Convex optimisation - functional form
The dual program is given by

. _ _ A
maximize pA — log (ZIP’X(j)e )

J
subject to A >0
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J
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Since any A\(p)will give an upper bound by strong duality,
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Convex optimisation - functional form
The dual program is given by

maxi)\mize — pA — log (Z Px (j)eﬁ‘>
J
subject to A >0
Since any A(p)will give an upper bound by Strong duality, we can

choose the function to be A\(p) = ¢(q )(Dq — pi)
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Functional form - intuition

1 1

Ap) = c(q)(D?* — p9)



Functional form - intuition

1 1

A(p) = c(@)(D* — p7)
e (D) should be zero



Functional form - intuition
1 1
A(p) = c(g)(D* — p1)
e (D) should be zero
e A(p) should be monotonically increasing
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Functional form - intuition

1 1
A(p) = c(g)(D? — p7)

e A(D)should be zero

e \(p) should be monotonically increasing

Open - more analytical justification of why this is
the form.
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What is the value of ¢(q)?

0 25 50 75 100 125
q

150

175 200
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Immediate result - asymptotic sizes of Lee
balls

175 1

75 A r
A
50 1 n=200,¢=06
—e— Numerical Simulation
25 A 4 Gaussian Approximation
Full Sanov theorem approximation
0 - = = Sanov theorem with chosen function
T T T T T T T
0 50 100 150 200 250 300
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Also - bounds on codes In Lee metric
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Key takeaways

e 5Solving an algebraic problem using analytic techniques
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Key takeaways

e 5Solving an algebraic problem using analytic techniques

e Method generalises to all discrete metrics with the following
property - the set of distances of all symbols to one fixed
symbol remains the same when the fixed symbol is replaced
by some other symbol

e Should generalise to other discrete metrics too, but the
expressions would be more complicated.
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Thank you!



