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Question

How do we find bounds on the size of codes for discrete metrics 

other than the Hamming metric? What about the Lee metric? 
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What can we do with the answer?
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Notation - The volume of a Lee ball of radius      and in a code with 
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Notation - The volume of a Lee ball of radius      and in a code with 

blocklength       is given by 

● Chiang and Wolf1 gave the following bounds for the Lee 

metric

● So if we know            we will also know bounds on 

● Berlekamp2 also gave the EB bound for the Lee metric

What can we do with the answer?

Hamming Bound Gilbert-Varshamov Bound

9
1. J. C.-Y. Chiang and J. K. Wolf, “On channels and codes for the Lee metric” (1971)
2. R. Berlekamp, Algebraic Coding Theory - Revised Edition (2015)



So the question is to figure out 

10



So the question is to figure out 
● Chiang and Wolf3 gave the following expression.
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So the question is to figure out 
● Chiang and Wolf3 gave the following expression

which is mathematically intractable.

● Roth4 gave the following expression for radius

But the parameter regime is too small.
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Our contribution(s)
● We use the generating function for a metric and Sanov’s 
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Our contribution(s)
● We use the generating function for a metric and Sanov’s 

theorem to find the volume of a sphere of given radius. 

● It reduces to the known results for the Hamming metric 

● It allows us to find bounds on the rate for the Lee metric
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Our Methods
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The Generating Function
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● The generating function is multiplicative and

●              gives the weights for a single symbol only.
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The Generating Function
● Because the distance function is additive over the     

coordinates…

● The generating function is multiplicative and

●              gives the weights for a single symbol only.

q-ary Hamming Metric
Lee metric for odd q

Lee metric for even q
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New Question

How do we find 

                          ?
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Involving a probability distribution
Say we start from
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Involving a probability distribution
Say we start from

Dividing by q, we get

Which defines a discrete random variable      that takes value 0 

w.p. 1/q, 1 w.p. 2/q and so on. 
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Involving a probability distribution
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Involving a probability distribution

The        give the probability that the sum of i.i.d. samples 

drawn according to   add up to
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Sanov’s Theorem

38Sanov, I. N. (1957) "On the probability of large deviations of random variables"
Cover, Thomas M.; Thomas, Joy A. (2006). Elements of Information Theory (2 ed.)



Using Sanov’s theorem - finding E
The natural choice while calculating the         coefficient is the set 

of all distributions with mean less than or equal to     .
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Sanity Check - Hamming metric
The Hamming metric does not require convex optimisation. The 

random variable in the Hamming case is Bernoulli, and the KL 

divergence minimising distribution is not hard to find. The result 

is familiar. 
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Sanity check for the Hamming metric
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Convex Optimisation
In general, we need to use convex optimisation to find P*
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Convex Optimisation
In general, we need to use convex optimisation to find P*

Strong duality holds for the problem, so any solution to the dual 

implies an upper bound for the primal.
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Convex optimisation - functional form
The dual program is given by

Since any            will give an upper bound by strong duality, we can 

choose the function to be  
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Functional form - intuition

●               should be zero 

●               should be monotonically increasing

Open - more analytical justification of why this is 
the form. 
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What is the value of           ?
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Immediate result - asymptotic sizes of Lee 
balls
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Also - bounds on codes in Lee metric
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Key takeaways
● Solving an algebraic problem using analytic techniques

● Method generalises to all discrete metrics with the following 

property - the set of distances of all symbols to one fixed 

symbol remains the same when the fixed symbol is replaced 

by some other symbol

● Should generalise to other discrete metrics too, but the 

expressions would be more complicated.
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Thank you!
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