A method to find the volume of a sphere in the Lee metric, and its applications **Sagnik Bhattacharya**, Adrish Banerjee (IIT Kanpur)

ISIT 2019 July 9, 2019

How do we find bounds on the size of codes for discrete metrics other than the Hamming metric? What about the Lee metric?

Notation - The volume of a Lee ball of radius t and in a code with blocklength n is given by $V_t^{(n)}$

Notation - The volume of a Lee ball of radius t and in a code with blocklength n is given by $V_t^{(n)}$

• Chiang and Wolf¹ gave the following bounds for the Lee metric

Notation - The volume of a Lee ball of radius t and in a code with blocklength n is given by $V_t^{(n)}$

- Chiang and Wolf¹ gave the following bounds for the Lee metric $V_{(d-1)/2}^{(n)} \leq q^{n(1-R(d))}$

Hamming Bound

Notation - The volume of a Lee ball of radius t and in a code with blocklength n is given by $V_t^{(n)}$

• Chiang and Wolf¹ gave the following bounds for the Lee metric $V_{(d-1)/2}^{(n)} \leq q^{n(1-R(d))}$ $V_d^{(n)} > q^{n(1-R(d))}$

Hamming Bound

Gilbert-Varshamov Bound

Notation - The volume of a Lee ball of radius t and in a code with blocklength n is given by $V_t^{(n)}$

- $\begin{array}{ll} \bullet & \mbox{Chiang and Wolf}^1 \mbox{ gave the following bounds for the Lee} \\ & \mbox{metric} & V_{(d-1)/2}^{(n)} \leq q^{n(1-R(d))} & V_d^{(n)} > q^{n(1-R(d))} \\ & \mbox{Hamming Bound} & \mbox{Gilbert-Varshamov Bound} \end{array}$
- So if we know $V_t^{(n)}$ we will also know bounds on R(d)

Notation - The volume of a Lee ball of radius t and in a code with blocklength n is given by $V_t^{(n)}$

- $\begin{array}{ll} \bullet & \mbox{Chiang and Wolf}^1 \mbox{ gave the following bounds for the Lee} \\ & \mbox{metric} & V_{(d-1)/2}^{(n)} \leq q^{n(1-R(d))} & V_d^{(n)} > q^{n(1-R(d))} \\ & \mbox{Hamming Bound} & \mbox{Gilbert-Varshamov Bound} \end{array}$
- So if we know $V_t^{(n)}$ we will also know bounds on R(d)
- Berlekamp² also gave the EB bound for the Lee metric
 - 1. J. C.-Y. Chiang and J. K. Wolf, "On channels and codes for the Lee metric" (1971)
 - 2. R. Berlekamp, Algebraic Coding Theory Revised Edition (2015)

So the question is to figure out $V_t^{\left(n\right)}$

So the question is to figure out $V_t^{\left(n\right)}$

• Chiang and Wolf³ gave the following expression.

$$V_r^{(n)}(z) = \left(\sum_{i=0}^r \frac{1}{i!} \frac{d^i}{dz^i} A^{(n)}(z)\right)_{z=0}$$

So the question is to figure out $V_t^{\left(n\right)}$

• Chiang and Wolf³ gave the following expression

$$V_r^{(n)}(z) = \left(\sum_{i=0}^r \frac{1}{i!} \frac{d^i}{dz^i} A^{(n)}(z)\right)_{z=0}^r$$

which is mathematically intractable.

So the question is to figure out $V_t^{\left(n ight)}$

• Chiang and Wolf³ gave the following expression

$$V_r^{(n)}(z) = \left(\sum_{i=0}^r \frac{1}{i!} \frac{d^i}{dz^i} A^{(n)}(z)\right)_{z=0}$$

which is **mathematically intractable**.

• Roth⁴ gave the following expression for radius t < q/2 $V_{i}^{(n)} = \sum_{i=1}^{n} 2^{i} \binom{n}{t} \binom{t}{2}$

$$V_t^{(n)} = \sum_{i=0} 2^i \binom{n}{i} \binom{i}{i}$$

- 3. J. C.-Y. Chiang and J. K. Wolf, "On channels and codes for the Lee metric" (1971)
- 4. R. Roth, Introduction to Coding Theory (2006)

So the question is to figure out $V_t^{\left(n ight)}$

• Chiang and Wolf³ gave the following expression

$$V_r^{(n)}(z) = \left(\sum_{i=0}^r \frac{1}{i!} \frac{d^i}{dz^i} A^{(n)}(z)\right)_{z=0}$$

which is **mathematically intractable**.

• Roth⁴ gave the following expression for radius t < q/2

$$V_t^{(n)} = \sum_{i=0}^n 2^i \binom{n}{i} \binom{t}{i}$$

But the parameter regime is too small.

- 3. J. C.-Y. Chiang and J. K. Wolf, "On channels and codes for the Lee metric" (1971)
- 4. R. Roth, Introduction to Coding Theory (2006)

Our contribution(s)

• We use the generating function for a metric and Sanov's theorem to find the volume of a sphere of given radius.

Our contribution(s)

- We use the generating function for a metric and Sanov's theorem to find the volume of a sphere of given radius.
- It reduces to the known results for the Hamming metric

Our contribution(s)

- We use the generating function for a metric and Sanov's theorem to find the volume of a sphere of given radius.
- It reduces to the known results for the Hamming metric
- It allows us to find bounds on the rate for the Lee metric

Our Methods

 $A_{t}^{(n)} := |\{x \in [q]^{n} : \operatorname{dist}(C, x) = t\}|$

 $A_{t}^{(n)} := |\{x \in [q]^{n} : \operatorname{dist}(C, x) = t\}|$

• The generating function for the $A_j^{(n)}$

$$A^{(n)}(z) = \sum_{j} A^{(n)}_{j} z^{j}$$

• Because the distance function is additive over the *n* coordinates...

- Because the distance function is additive over the *n* coordinates...
- The generating function is multiplicative

- Because the distance function is additive over the *n* coordinates...
- The generating function is multiplicative and $A^{(n)}(z) = [A^{(1)}(z)]^n$

- Because the distance function is additive over the *n* coordinates...
- The generating function is multiplicative and $A^{(n)}(z) = [A^{(1)}(z)]^n$
- $A^{(1)}(z)$ gives the weights for a single symbol only.

- Because the distance function is additive over the *n* coordinates...
- The generating function is multiplicative and $A^{(n)}(z) = [A^{(1)}(z)]^n$
- $A^{(1)}(z)$ gives the weights for a single symbol only.

$$A^{(1)}(z) = 1 + (q-1)z$$

q-ary Hamming Metric

- Because the distance function is additive over the *n* coordinates...
- The generating function is multiplicative and $A^{(n)}(z) = [A^{(1)}(z)]^n$
- $A^{(1)}(z)$ gives the weights for a single symbol only.

$$A^{(1)}(z) = 1 + (q-1)z$$

$$A^{(1)}(z) = 1 + 2z + 2z^{2} + \ldots + 2z^{\frac{q-1}{2}}$$
Lee metric for odd q

q-ary Hamming Metric

- Because the distance function is additive over the *n* coordinates...
- The generating function is multiplicative and $A^{(n)}(z) = [A^{(1)}(z)]^n$
- $A^{(1)}(z)$ gives the weights for a single symbol only.

$$A^{(1)}(z) = 1 + (q-1)z$$

q-ary Hamming Metric

$$A^{(1)}(z) = 1 + 2z + 2z^{2} + \dots + 2z^{\frac{q-1}{2}}$$

Lee metric for odd q
$$A^{(1)}(z) = 1 + 2z + 2z^{2} + \dots + 2z^{\frac{q-2}{2}} + z^{\frac{q}{2}}$$

Lee metric for even q

New Question

How do we find

Involving a probability distribution We start by dividing both sides of $A^{(n)}(z) = \sum_j A_j^{(n)} z^j$ by q^n Involving a probability distribution We start by dividing both sides of $A^{(n)}(z) = \sum_{j} A_{j}^{(n)} z^{j}$ by q^{n} to get

$$\left[\frac{A^{(1)}(z)}{q}\right]^{n} = \sum_{j} \frac{A_{j}^{(n)}}{q^{n}} z^{j} = \sum_{j} B_{j}^{(n)} z^{j}$$

Involving a probability distribution We start by dividing both sides of $A^{(n)}(z) = \sum_{i} A_{j}^{(n)} z^{j}$ by q^{n} to get

Involving a probability distribution Say we start from

$$A^{(1)}(z) = 1 + 2z + 2z^2 + \ldots + 2z^{\frac{q-1}{2}}$$

Involving a probability distribution Say we start from

$$A^{(1)}(z) = 1 + 2z + 2z^2 + \ldots + 2z^{\frac{q-1}{2}}$$

Dividing by q, we get $\frac{A^{(1)}(z)}{q} = \frac{1}{q} + \frac{2}{q}z + \frac{2}{q}z^2 + \ldots + \frac{2}{q}z^{\frac{q-1}{2}}$ Involving a probability distribution Say we start from

$$A^{(1)}(z) = 1 + 2z + 2z^2 + \ldots + 2z^{\frac{q-1}{2}}$$

Dividing by q, we get $\frac{A^{(1)}(z)}{q} = \frac{1}{q} + \frac{2}{q}z + \frac{2}{q}z^2 + \ldots + \frac{2}{q}z^{\frac{q-1}{2}}$

Which defines a discrete random variable X that takes value 0 w.p. 1/q, 1 w.p. 2/q and so on.

Involving a probability distribution

$$\left[\frac{A^{(1)}(z)}{q}\right]^{n} = \sum_{j} \frac{A_{j}^{(n)}}{q^{n}} z^{j} = \sum_{j} B_{j}^{(n)} z^{j}$$

Involving a probability distribution

$$\left[\frac{A^{(1)}(z)}{q}\right]^{n} = \sum_{j} \frac{A^{(n)}_{j}}{q^{n}} z^{j} = \sum_{j} B^{(n)}_{j} z^{j}$$

The $B_j^{(n)}$ give the probability that the sum of n *i.i.d.* samples drawn according to X add up to j

Sanov's Theorem

Theorem 1 (Sanov's Theorem). Let X_1, X_2, \ldots, X_n be i.i.d. $\sim Q(x)$. Let $E \subseteq \mathcal{P}$ be a set of probability distributions and \mathcal{P} be the set of all types from the *n* realisations X_1, X_2, \ldots, X_n . Then,

$$Q^{n}(E) = Q^{n}(E \cap \mathcal{P}_{n}) \le (n+1)^{|\mathcal{X}|} 2^{-nD(P^{*}||Q)}$$

where $|\mathcal{X}|$ is the support of each X_i , $D(\cdot||\cdot)$ is the K-L divergence, $Q^n(E)$ is the probability that the empirical distribution obtained from an n-long sample X_1, \ldots, X_n each $\sim Q(x)$ belongs to the set E, and

$$P^* = \arg\min_{P \in E} D(P||Q)$$

is the distribution in E that is closest to Q in relative entropy. If we also have that the set E is the closure of its interior, then we also have the result

$$\frac{1}{n}\log Q^n(E) \to -D(P^*||Q)$$

Retaining terms upto first order in the exponent, we have

$$2^{-nD(P^*||Q)-o(n)} \le Q^n(E) \le 2^{-nD(P^*||Q)+o(n)}$$

Sanov, I. N. (1957) "On the probability of large deviations of random variables" Cover, Thomas M.; Thomas, Joy A. (2006). Elements of Information Theory (2 ed.)

Using Sanov's theorem - finding E

The natural choice while calculating the k^{th} coefficient is the set of all distributions with mean less than or equal to k.

Sanity Check - Hamming metric

The Hamming metric does not require convex optimisation. The random variable in the Hamming case is **Bernoulli**, and the KL divergence minimising distribution is not hard to find. The result is familiar.

$$q^{nH_q(p)-o(n)} \le V_{pn}^{(n)} \le q^{nH_q(p)+o(n)}$$

Sanity check for the Hamming metric

Convex Optimisation

In general, we need to use convex optimisation to find P^*

Convex Optimisation

In general, we need to use convex optimisation to find P^*

Strong duality holds for the problem, so any solution to the dual implies an upper bound for the primal.

Convex optimisation - functional form The dual program is given by

$$\begin{array}{ll} \underset{\lambda}{\text{maximize}} & -p\lambda - \log\left(\sum_{j} \mathbb{P}_{X}(j)e^{-j\lambda}\right) \\ \text{subject to} & \lambda \ge 0 \end{array}$$

Convex optimisation - functional form The dual program is given by

$$\begin{array}{ll} \underset{\lambda}{\text{maximize}} & -p\lambda - \log\left(\sum_{j} \mathbb{P}_{X}(j)e^{-j\lambda}\right) \\ \text{subject to} & \lambda \ge 0 \end{array}$$

Since **any** $\lambda(p)$ will give an upper bound by strong duality,

Convex optimisation - functional form The dual program is given by

maximize
$$-p\lambda - \log\left(\sum_{j} \mathbb{P}_{X}(j)e^{-j\lambda}\right)$$

subject to $\lambda > 0$

Since **any** $\lambda(p)$ will give an upper bound by strong duality, we can choose the function to be $\lambda(p) = c(q)(\overline{D}^{\frac{1}{q}} - p^{\frac{1}{q}})$

$$\lambda(p) = c(q)(\overline{D}^{\frac{1}{q}} - p^{\frac{1}{q}})$$

$$\lambda(p) = c(q)(\overline{D}^{\frac{1}{q}} - p^{\frac{1}{q}})$$

• $\lambda(\overline{D})$ should be zero

$$\lambda(p) = c(q)(\overline{D}^{\frac{1}{q}} - p^{\frac{1}{q}})$$

- $\lambda(\overline{D})$ should be zero
- $\lambda(p)$ should be monotonically increasing

$$\lambda(p) = c(q)(\overline{D}^{\frac{1}{q}} - p^{\frac{1}{q}})$$

- $\lambda(\overline{D})$ should be zero
- $\lambda(p)$ should be monotonically increasing

Open - more analytical justification of why this is the form.

What is the value of c(q)?

q

Immediate result - asymptotic sizes of Lee

Also - bounds on codes in Lee metric

• Solving an algebraic problem using analytic techniques

- Solving an algebraic problem using analytic techniques
- Method generalises to all discrete metrics with the following property

- Solving an algebraic problem using analytic techniques
- Method generalises to all discrete metrics with the following property - the set of distances of all symbols to one fixed symbol remains the same when the fixed symbol is replaced by some other symbol

- Solving an algebraic problem using analytic techniques
- Method generalises to all discrete metrics with the following property - the set of distances of all symbols to one fixed symbol remains the same when the fixed symbol is replaced by some other symbol
- Should generalise to other discrete metrics too, but the expressions would be more complicated.

Thank you!