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Abstract

I Language evolution is a subfield of psycholinguisitcs, biology
and population dynamics that tries to answer the questions
about what genetic changes led to the development of
language in its current forms in humans, and what are the
dynamics of the evolution of language.

I It is a fair assumption, given the problem at hand, that
language developed in small steps, guided by natural selection.

I The goal of the KNN model is to explain the development of
properties such as arbitrary signs, syntax, and grammar using
Darwinian evolution modelled dynamical equations.

I The model is based on evolutionary game theory, under some
fixed assumptions.
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Abstract

I The goal of our work is to survey the field of evolutionary
dynamics of language, focusing on the KNN model and its
extensions.

I The model in its most basic form is characterized by a
communication payoff of a language in the form of a fitness
function for its users, proportional to which populations
change.

I We aim to cover results observed in simulated environments
that evolve using these dynamics.
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The Model

I The world consists of individuals (who are assumed to have a
particular Universal Grammar that allows finitely many
languages) that can interact with each other.

I Communication between them that is successful results in
positive payoffs, in the forms of fitness functions

I Children learn languages via inputs from the parents (for
simplicity we assume a single parent) and learn the same
language as them, except in the case of an error, in which
case they learn a different language

I As described by evolutionary game theory literature, more fit
individuals are more likely to produce offspring than those
with lesser fitness.
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I Formally, a language is a mapping between syntax and
meaning, a subset of the cross product of the set of all
languages and the set of all meanings, encoded in a particular
alphabet.

I The similarity between the languages is captured in a matrix
that will be henceforth denoted A, that has aij as the
probability of a speaker of language j being able to
understand an utterance by a speaker of language i .

I The mean of aij and aji is a measure of the payoff of an
interaction between speakers of languages i and j .
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I As mentioned above, the transfer of language is not perfect,
and is subject to errors, which are captured by matrix Q.

I The entry Qi ,j denotes the probability that the child of a
speaker of language i learns language j .

I The dependence of Q on A is quite clear: Languages that are
quite similar will have higher entries in the Q matrix, since it
is easy to accidentally learn a similar language, based on the
stimulus.

I Q also depends on the mechanism used by the learner to learn
a language given the stimulus.
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I In what follows, xi refers to the proportion of the population
that speaks language i .

I Fitness of an individual who speaks language i is given by:

fi = ΣjxjFij

I This fitness is the probability that a speaker of i is understood
in a random interaction.

I The average fitness of the population is given by:

φ = Σjxj fj
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I Following evolutionary game theory then gives the following
rate change equation:

ẋi = Σjxj fjQji − φxj

I φ is a measure of the linguistic coherance of the population.
It is the probability of a successful language interaction.
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Fixed points of the equation and stability

I The above differential equation can be analyzed for
equilibrium points. Three points are obtained, one where all
languages are spoken equally, one where one language is
preferred, and one where one of the languages is less preferred
than the rest.

I The stability of these points depends on the error rate of the
learner.

I For example, when the error rate is very low, the solution with
one dominant language is most stable, and the equilibrium
relative population only grows with the decrease in accuracy.

I The solution with one language less preferred on the other
hand is unstable, and such a system does not last for a long
time.
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Memoryless Learning

I One of the two most basic learning models is the memoryless
learning: an agent that picks a language at random and sticks
to it till it faces stimulus which is inconsistent, and which
point it randomly switches again.

I It can be shown that the error rate depends on the similarity
matrix between the languages, and that for enough stimulus,
the learning error will converge to zero.

I The condition for the existance of a stable solution is that the
number of inputs is linear in the number of languages,

b ≥ n ∗ c

where b is the number of inputs per speaker to maintain a
particular grammar.
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Batch Learner

I On the other hand, an agent that can memorize all inputs and
pick the best language can learn with much lesser input than
the memoryless learner.

I The number of inputs required by batch learners to develop a
coherent language is proportional to the logarithm of n.

b ≥ log n ∗ c

I Since these are two extremes of the possible ways an agent
can learn a language we can hypothesize that the number of
inputs required by a real agent using any algorithm would lie
between these two bounds.
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Evolution of grammatical coherence

I In general, the language dynamics equation admits multiple
(stable and unstable) equilibria.

I For low accuracy of grammar acquisition ie low values of qii ,
all grammars/ languages occur with roughly equal abundance.
This means grammar coherence is low. But as the accuracy of
language acquisition increases, game theoretic solutions arise
where a particular grammar is more abundant.

I This means that if the accuracy of learning is sufficiently high,
the population will converge to one dominant language.

I It all depends upon the initial condition. There might be some
cases where chaotic behavior arises.
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Languages are not static. History is a proof to that. Language
change also has the potential for oscillations, such as the
morphology type cycle. Changes such as these arise from learning
errors, meaning that a child has acquired a grammar different from
the parents’. For example, it can happen if the data under specifies
the grammar.



Limit Cycles and Chaos

Consider an example of three grammars, then the payoff matrix :

B =

0.88 0.2 0.2
0.2 0.88 0.2
0.2 0.2 0.88



In this case. all grammars are equally good. If we assume learning
is perfect, the dynamics are very simple and everyone converges to
one of the three languages over time. Imperfect learning causes
very different behaviour.
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Consider the following learning matrix :

Q =

0.79 0.2 0.1
0.1 0.79 0.2
0.2 0.1 0.79


Here for each grammar, there is a ’most likely learned’ language
and a ’second most likely learned’ language. These parameters
produce stable oscillations, as learning errors in the subpopulation
speaking G1 feed into G2, and G2 feeds into G3, and G3 feeds back
into G1. We see the formation of a limit cycle in this case.





If the learning is made less accurate the the limit cycle is not stable
and it collapses down into an inward spiral sink which results in an
even more complex behaviour.



Period doubling

Consider an example of five grammars, then the payoff matrix :

B =


0.88 0.2 0.2 0 0.3
0.2 0.88 0.2 0 0.3
0.2 0.2 0.88 0 0.3
0.3 0.3 0.3 0.88 0
0 0 0 0.3 0.88



Each language is in a strict Nash-equilibrium. For perfect learning,
there would be a stable equilibrium where all individuals end up
speaking the same one.
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But let’s consider an imperfect learning matrix family Q :
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0 0 0 µ 1-µ

1-µ 0 0 0 µ



The parameter µ denotes the learning accuracy of the grammars
G4 and G5. Varying the parameter µ we get some very complex
chaotic behaviour.
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Future Work

1. There exists a very different model of language acquisition
called the Kirby model that works (with different assumptions)
on the individual and not the population level. We intend to
look at ways in which we can integrate the two models.

2. We want to look at the available linguistic data to match the
parameters of the model to the data and see how well they
match.

3. There has been some work done in modelling language
convergence, contact and death. We want to extend that
work to more cases.

4. There have also been proposed extensions to the basic model
that we have not gone into in this presentation. They give rise
to more interesting dynamics. We want to look into those
models too.
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Period Doubling

I Analyze the following equation

xn+1 = λxn(1 − xn)

I Feigenbaum’s Constant on Numberphile



Languages are not static

I Morphology type cycle ’Languages tend to use either
isolating morphology, with many small words each carrying a
single piece of meaning, or agglutinating morphology, in which
words consist of a stem plus many affixes carrying a single
piece of meaning, or inflecting morphology, in which each affix
carries many pieces of meaning. Roughly, languages tend to
change from isolating to agglutinating to inflecting and back
to isolating (Crowley 1998). English, for example, has lost
case endings and other forms of inflection and is changing
from inflecting to isolating morphology.’ [Mitchener and
Nowak, 2003]



Languages are not static

I Chaos and Language ’the loss of case endings on nouns in
Old English is thought to be due to contact with Old Norse
(Lightfoot 1999).’ [Mitchener and Nowak, 2003]
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