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... and the adversarial BSC(p)
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How to circumvent the adversary?
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How to circumvent the adversary?

Omniscient Adversarial Noise (power limited)
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An extra resource:
Common Randomness

Langberg (2004)




Follow up questions

How much common randomness do we require to get back to
capacity?

Achievability Converse
(1+ €)log(n) (1 — €)log(n)
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Follow up questions

How much common randomness do we require to get back to
capacity?

Ac/"//////////ﬁ\\\\\\\\\\\‘\s;

Achievability Converse

..which we answer for more general adversarial channels
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The Setup
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The Setup
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Randomised Coding Capacity

Definition: Maximum rate when unbounded common
randomness is available

Theorem [Ahlswede 1986]

C,(A) := max min I(X:Y)

Px €Ax Pg|x:[PxPs|x]s€As
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Reminder - Key Question

How much common randomness do we require to get to
randomised coding capacity on a general AVC?
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Some answers exist...

O(log(n))bits are sufficient for a fairly wide class
of AVCs [Ahlswede, 1986][Langberg, 2004]
O(log(n)) e Approach also used in [Smith, 2007]
e extended to a wide class in [Sarwate, 2008]

()(log(n))bits are necessary for an adversarial
Q(log(n)) BSC(p) [Langberg, 2004]
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Our contributions

Sufficiency

Using (1 4 €) log(n) bits of common randomness achieves
capacity.

Necessity

(1 — €) log(n) bits of common randomness are necessary to
achieve capacity for ‘adversary-weakened’ AVCs.

Therefore, precise characterisation of threshold.
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Max probability of error
metric

The Achievability
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Overview

We want to increase the rate in presence of an adversary

1.0
. LP bound
L— Hip)
Rate /
0.4 1
)
A
ood—— L 1 ON_ 1 e,
(I.'(I H,'l HT'._’ U,'i} ('J.'l
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Divide and Conquer

1 Achieving the rate

2 Disambiguation

List
Decoding

Polynomial
Hashing
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List coding

Key known result:
For any e > 0 there exists a deterministic list code with rate

R=C,(A)—c¢

and list size
" log (|output alphabet|)

€

Let the code be CI)
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Codebook James

Using listcode
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Codebook James
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Bob’s decoder
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Bob’s decoder

M—>

y —> List Decoder

i

Candidate list of
(m, h) pairs

Codebook

Alice

Encoder

> James

Adversary
S

WY]X.S

h

Bob

Decoder

Output m if
h = H(m,k)

Error if
= H(m,k) and
h’ = H(m’,k)

45



Randomness generation

vy = log(n)

Q”y bits of randomness

AN

K

4
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Randomness generation

27 bits of randomness

AN
/
K
KO KI
-
v

Each of these belong to a field F of size n
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Alice’s encoder - hashing

n R bits of message
N
-~
m

(‘ .............. A . .A ............... )

mO m1 | | | | o m
\

Y
Message broken up into ¢ = nR/ log(n)
pieces.

Each belongs to the field F
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Alice’s encoder - hashing
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Alice’s encoder - hashing
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Analysis

We make James stronger

e byrevealing the hash and
e allowing himto send an arbitrary short list to Bob, as
long as the correct pair is in the list.

If we show the rate is achievable, it will still be achievable
with the weaker James.
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Analysis

C C
h=Ko+ Y Kim; h=Kj+>» Kim
i—1 i=1
C .
h—h = ZKi(mg —my)
1=1

Conditioned on everything that James knows, K. is uniformly
distributed...

James has to guess some K that will be consistent with the
true message-hash pair.

52



Analysis

C
h—h = ZKi(m; —m;)
1=1

e Reducesto guessing an assignment of variables that
makes a polynomial evaluate to zero.
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Analysis

C
h—h' =% Kj(mj—m;)
i=1

e Reduces to guessing an assignment of variables that
makes a polynomial evaluate to zero.
e Probability is small by the Schwartz-Zippel lemma.
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Analysis

C
h—h'= Ki(mj—m,)
i=1

e Reducesto guessing an assignment of variables that
makes a polynomial evaluate to zero.

e Probability is small by the Schwartz-Zippel lemma.

e |t canbeshown to give a polynomially decreasing error
rate that goes down to zero - which proves the claim.

nRR

Error Rate =
nlog(n)
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Average probability

of error criterion

Holds even if
adversary doesn't

know the message
W 5 Therefore a strong

converse

The Converse

Achievability’ for the
adversary
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Two parts to the converse

1 Rate Converse

2 Randomness Converse
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Two parts to the converse

1 Rate Converse Like a standard DMC converse

2 Randomness Converse
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Two parts to the converse

1 Rate Converse Like a standard DMC converse

Same basic approach as in

2 Randomness Converse [Langberg, 2004] but extended
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Proof

Available Randomness

k:= (1 —¢€)log(nR) —1 < log(n)



Confusability

Yk

Error!
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Confusability - example (Langberg)
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Confusability - example (Langberg)
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Small and Large sets

Uy ={x e X" :¢p(m, k) =x,k € A}



Small and Large sets

Uy ={x e X" :¢p(m, k) =x,k € A}
Given A, these are called large if

|Z/{A | > 2nR—(nR)1_e
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The union of small sets is small
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The union of small sets is small
W_/

because... (nryl—¢
2

S 2nR—
‘QV(K)‘ _ 92° _ o(nR)'"/2

And small sets have size

|Z/{A | < 277,}2—(71112)1_6
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The union of small sets is small

because... (nryl—¢

‘QV(K)‘ _ 92° _ o(nR)'"/2

And small sets have size

|z/[A | < 277,R—(nR)1_6

Which gives the result!
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Number of (m,k) pairs that map to
codewords in small sets is small

< onR— ("’Rgl_e Ik
Number of codewords x Total number of k SMAL L
In ‘small sets vectors —
~—— ~—~—
small small

Pairs that map to codewords in large
setsislarge
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Large codes with rates higher thanC,
have at least | C|/4 confusable pairs

Otherwise, expurgation of the small
number of confusable codewords
gives a deterministic code with
higher rate than C,
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Quick aside - a non-adversary weakened
AVC

X=8=1{01
Y =1{0,1,2}
v=xI1Ts=0

v=x+sifs=1



The (/4 have many confusable pairs

By the previous result
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Jamming strategy

1. |dentify the large U 4's

o)

Yk
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Jamming strategy
1. |dentify the large U 4's
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Jamming strategy
1. |dentify the large U 4's
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-

2. ldentify the confusable pairs
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Jamming strategy
1. |dentify the large U 4's

) S;
Yk
\ 3. ldentity the jamming vectors
-

2. ldentify the confusable pairs Error!
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Many Errors

Since there are many
codewords in large sets, and

many of them are confusable,

probability of erroris large

QED
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Take-away

(1 1T 6) log(n)

bits are necessary and
sufficient to achieve
randomized coding capacity.
Precise threshold!
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Thank you!
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