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An extra resource:
Common Randomness

K

Langberg (2004)
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How to circumvent the adversary? AJB: I think Langberg is the correct principal reference here. His 
technique was very different from Ahlswede/Ericsson etc which 
was for oblivious AVCs and not applicable to omniscient AVCs.
But it will help to make this distinction (in the AVC 
oblivious/omniscient models) here ; some in the audience will 
expect `Ahlswede etc’ to be mentioned. You can just say this in 
words or mention Ahlswede etc with oblivious AVCs in 
parentheses.

-Also, Sarwate extended this to general omniscient channels. You 
can choose to mention that if you deem fit.

Another point to keep in  mind (no need to mention actually)
Unlike Binary example, for general omniscient AVCs the 
randomized coding capacity (under arbitrary SR) need not equal the 
corresp. “Random noise” Shannon capacity (it’s correlated 
memoryless noise P_{S|X}  )
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Follow up questions

How much common randomness do we require to get back to 

capacity?

Achievability Converse

Emphasize *exact* common randomness

Maybe use the word *threshold*

Good place to also mention that it has 
been known that O(log(n)) are 
sufficient..and then say you will show that 
it is *exactly* log(n).

This req. Ach/converse..as you have 
shown

Much of this can be said in words (you 
may have thought that way, in which case 
excuse the suggestion)

But do emphasize the question 
clearly..threhold/exact helps that i think
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Follow up questions
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...which we answer for more general adversarial channels

How much common randomness do we require to get back to 

capacity?

Achievability Converse
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AVC

31

AJB: 
You can maybe mention that \Lambda_S\subseteq 
\mathcalP(\mathcalX) 
(\mathcalP(\mathcalX is set of all P_X distributions)
THis will help the audience understand where \LAmbda_X resides.

Also for the adversary set.

Input 
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Randomness



Definition: Maximum rate when unbounded common 

randomness is available

Theorem [Ahlswede 1986] 

Randomised Coding Capacity
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AJB:

Please change this as follows:

First clearly mention via definition (in a 
box with border maybe) that `randomized 
coding capacity’ is the max throughput 
under arbitrarily large SR. You can 
introduce the notation C_r(\cA):= 
\text{rand. capacity} as this capacity here. 

Then, as a theorem (box with border also 
saying THEOREM)
Say that C_r(\cA)= max min... 
Note that this is not a definition.
It will help to cite the relevant references 
here. Sarwate seems appropriate.



Reminder - Key Question

How much common randomness do we require to get to 

randomised coding capacity on a general AVC?
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Some answers exist...

                      bits are sufficient for a fairly wide class 
of AVCs [Ahlswede, 1986][Langberg, 2004] 
● Approach also used in [Smith, 2007] 
● extended to a wide class in [Sarwate, 2008]

                      bits are necessary for an adversarial 
BSC(p) [Langberg, 2004] 
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Our contributions

Sufficiency

Using                                   bits of common randomness achieves 

capacity.

Necessity

                                 bits of common randomness are necessary to 

achieve capacity for ‘adversary-weakened’ AVCs.

Therefore, precise characterisation of threshold.
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The Achievability

Max probability of error 
metric
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We want to increase the rate in presence of an adversary

Overview

Rate

p

LP bound
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Divide and Conquer

Achieving the rate

Disambiguation 2

 1
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Polynomial 
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List 
Decoding



List coding

Key known result:

For any               there exists a deterministic list code with rate 

and list size 

Let the code be 
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Using list code
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Using list code
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Using list code
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Bob’s decoder

y List Decoder

Candidate list of 
(m, h) pairs
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Bob’s decoder

y List Decoder

Candidate list of 
(m, h) pairs

k

Output m if
h = H(m,k)

Error if 
h = H(m,k) and 

h’ = H(m’,k)
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Randomness generation
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Randomness generation

Each of these belong to a field F of size n 

47

K

K0 K0 K1

bits of randomness



Alice’s encoder - hashing

Message broken up into          
                         pieces.

 

m

m0 m1 mc-1 mc

bits of message
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Each belongs to the field F



Alice’s encoder - hashing
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bits of message

Arranged in a 1D array of length c
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Alice’s encoder - hashing

Hash   =
50

m

m0 m1 mc-1 mc

bits of message

Arranged in a 1D array of length c



Analysis

We make James stronger 

● by revealing the hash and 

● allowing him to send an arbitrary short list to Bob, as 

long as the correct pair is in the list.

If we show the rate is achievable, it will still be achievable 
with the weaker James.
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Analysis

Conditioned on everything that James knows, K1 is uniformly 

distributed…

James has to guess some K1 that will be consistent with the 

true message-hash pair.
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Analysis

● Reduces to guessing an assignment of variables that 

makes a polynomial evaluate to zero. 
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Analysis

● Reduces to guessing an assignment of variables that 

makes a polynomial evaluate to zero. 

● Probability is small by the Schwartz-Zippel lemma.

54



Analysis

● Reduces to guessing an assignment of variables that 

makes a polynomial evaluate to zero. 

● Probability is small by the Schwartz-Zippel lemma.

● It can be shown to give a polynomially decreasing error 

rate that goes down to zero - which proves the claim.
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The Converse

Average probability 
of error criterion Holds even if 

adversary doesn’t 
know the message

Therefore a strong 
converse

‘Achievability’ for the 
adversary
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Two parts to the converse

Rate Converse

Randomness Converse 2

 1
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Like a standard DMC converse

Same basic approach as in 
[Langberg, 2004] but extended 
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Confusability - example (Langberg)
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Confusability - example (Langberg)
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Confusability - example (Langberg)
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Given A, these are called large if 

Small and Large sets



The union of small sets is small

67



The union of small sets is small

68



The union of small sets is small

69

because...



The union of small sets is small

70

because...



The union of small sets is small

71

because...



The union of small sets is small

72

because...

And small sets have size



The union of small sets is small
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because...

And small sets have size Which gives the result!



Number of (m,k) pairs that map to 
codewords in small sets is small 
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Number of codewords 
in ‘small’ sets

Total number of k 
vectors

small small

SMALL

Pairs that map to codewords in large 
sets is large



Large codes with rates higher than Cd 
have at least | C |/4 confusable pairs
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Otherwise, expurgation of the small 
number of confusable codewords 

gives a deterministic code with 
higher rate than Cd



Quick aside - a non-adversary weakened 
AVC
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y = x if s = 0

y = x + s if s = 1
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By the previous result

The          have many confusable pairs
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Jamming strategy
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1. Identify the large         ‘s

2. Identify the confusable pairs

3. Identify the jamming vectors

Error!



Many Errors
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Since there are many 
codewords in large sets, and 

many of them are confusable, 
probability of error is large

QED



Take-away
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bits are necessary and 
sufficient to achieve 

randomized coding capacity.
Precise threshold!



Thank you!
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