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Abstract—We study an adversarial communication problem
where sender Alice wishes to send a message m to receiver
Bob over an arbitrarily varying channel (AVC) controlled by
a malicious adversary James. We assume that Alice and Bob
share randomness K unknown to James. Using K, Alice first
encodes the message m to a codeword X and transmits it over the
AVC. James knows the message m, the (randomized) codebook
and the codeword X. James then inputs a jamming state S
to disrupt communication; we assume a state-deterministic AVC
where S completely specifies the channel noise. Bob receives a
noisy version Y of codeword X; it outputs a message estimate
m̂ using Y and the shared randomness K. We study AVCs,
called ‘adversary-weakened’ AVCs here, where the availability
of shared randomness strictly improves the optimum throughput
or capacity over it than when it is not available; the randomized
coding capacity characterizes the largest rate possible when K is
unrestricted. In this work, we characterize the exact threshold
for the amount of shared randomness K so as to achieve the
randomized coding capacity for ‘adversary-weakened’ AVCs.

We show that exactly log(n) equiprobable and independent
bits of randomness, shared between Alice and Bob and unknown
to adversary James, are both necessary and sufficient for achiev-
ing randomized coding capacity for ‘adversary-weakened’ AVCs.
For sufficiency, our achievability is based on a randomized code
construction which uses deterministic list codes along with a
polynomial hashing technique which uses the shared randomness.
Our converse, which establishes the necessity of log(n) bits of
shared randomness, uses a known approach for binary AVCs,
and extends it to general ‘adversary-weakened’ AVCs using a
notion of confusable codewords.
Extended draft available at https://goo.gl/1pg6Bi

I. INTRODUCTION

The optimal throughput or capacity over a fixed point-to-
point discrete memoryless channels (DMC) is well character-
ized (cf. [1]). It is known (cf. [2]) that the distinction between
fixed or deterministic codes and randomized codes, where
sender Alice and receiver Bob share randomness which allows
joint randomization of the encoder-decoder pair, is irrelevant
as the capacity remains the same in either case. Such shared
randomness, however, often proves crucial when the channel
law may not be fixed; for instance, the channel capacity under
adversarial communication, where an adversary maliciously
inputs jamming noise to disrupt communication, can be strictly
larger for randomized codes over deterministic codes (cf. [2]).
Furthermore, as the amount of shared randomness increases
the maximum throughput possible saturates to the randomized
coding capacity; the difference between the randomized cod-
ing capacity and deterministic coding capacity thus quantifies
the maximum rate penalty when shared randomness is absent.
It is well-known (at least since [3]) that O(log(n)) bits of
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shared randomness is sufficient to achieve randomized coding
capacity. In this work, we study the exact threshold for the
amount of common randomness where the aforementioned rate
penalty vanishes and randomized coding capacity is achieved.

Blackwell et al. [4] first studied adversarial communication
in the framework of information theory using the arbitrarily
varying channel (AVC) model. We consider communication
over state-deterministic AVCs1, where channel noise is com-
pletely specified by the jamming noise or state. More formally,
(cf. Fig 1) sender Alice and receiver Bob share randomness K
comprising κ bits which is unknown to adversary James. Alice
encodes a message m ∈ [2nR] and transmits the codeword
X = ψ(m,K) over the state-deterministic AVC. Jammer
James knows the message m and the randomized codebook;
we further assume that James is omniscient and knows X
non-causally. James inputs a jamming state s (this may be
arbitrarily correlated to m, X and the randomized codebook)
so as to disrupt the communication. Bob observes a noisy
version Y of the transmitted codeword X over the state-
deterministic AVC. We assume that both Alice and James have
type constraints ΓX and ΛS resp.; these correspond to ‘power
constraints’ which determine the set of feasible codeword and
state vectors. We study state-deterministic AVCs where the
capacity in the presence of shared randomness is strictly larger
than when it is absent; these are called ‘adversary-weakened’
AVCs (see Definition 1). Our interest lies in determining the
exact threshold on κ so as to achieve the randomized coding
capacity for the class of ‘adversary-weakened’ AVCs.
Related Work: Unlike [4] where shared randomness is un-
bounded, Ahlswede [3] showed that O(log(n)) (in partic-
ular, 2 log(n)) bits of shared randomness are sufficient for
achieving randomized coding capacity. His technique has
been subsequently adapted for different AVC models (cf.,
for instance, [5], [6]); for AVCs with omniscient adversaries,
however, it is not directly applicable. Langberg [7] employed
a different approach using list codes and an extension of
a well known result in [8] to characterize the randomized
coding capacity with O(log(n)) bits of shared randomness
for a binary AVC with an omniscient bit-flipping adversary.
His approach was also used in [9], and later extended to
a much wider class of AVCs in [10]. In the same work,
Langberg [7] also showed that Ω(log(n)) bits are necessary for
achieving the randomized coding capacity for aforementioned
binary AVC. However, similar results for general AVCs do
not exist; in this work we extend his result to more general

1See ‘channel law’ in Section II; more generally, AVCs can be non-state-
deterministic where the noise in the channel comprises the jamming state and
additional independent noise [2].



‘adversary-weakened’ AVCs.
Our Contribution: In this work, we investigate the thresh-
old for the amount of shared randomness for achieving
the randomized coding capacity of AVCs. We study the
class of ‘adversary-weakened’ AVCs; these are AVCs where
the deterministic coding capacity is strictly smaller than
randomized coding capacity (most non-trival AVCs exhibit
such behaviour and hence belong to this class). For every
‘adversary-weakened’ AVC, we show that log(n) equiproba-
ble and independent bits of randomness, shared between Alice
and Bob and unknown to adversary James, are necessary and
sufficient to achieve the randomized coding capacity for that
AVC. Unlike prior work, we show the existence of randomized
codes which comprise of shared randomness with the number
of shared bits arbitrarily close to log(n). Our converse which
establishes the necessity of log(n) bits of shared randomness
extends the approach in [7] (for symmetric binary AVCs) to
general ‘adversary-weakened’ AVCs.

In Section II, we first discuss the notation and then state the
problem. We present our main results in Section III. We give
proofs in Sections IV and V, and make concluding remarks
in Section VI.

II. NOTATION AND PROBLEM SETUP

A. Notation

Upper case letters (e.g. X) denote random variables, lower
case letters (e.g. x) represent the values taken by them, and
calligraphic letters (e.g. X ) denote their alphabet. We use
boldface notation to represent random vectors (e.g. X), and
the values taken by them (e.g. x). Unless specified otherwise,
the length of the vectors is n (e.g. X = (X1, X2, · · · , Xn))
and corresponds to the block length of operation. Let P(X )
denote the set of all probability distributions defined over
the set X . Also, let P(X|Y) denote the set of conditional
distribution of a random variable with alphabet X conditioned
on another random variable taking values in alphabet Y . Let
X and Y denote two random variables taking values in X
and Y respectively. Then, we denote the by PX , PX,Y , PX|Y
and [PX,Y ]X , the distribution of X , the joint distribution
of (X,Y ), the conditional distribution of X given Y , and
the marginal distribution of X under PX,Y respectively. Let
T

(n)
X ∈ P(n)(X ) denote any length-n type of X; here P(n)(X )

denotes the set of all length-n types TX defined over set X .
Unless specified otherwise, all types are under block length n.
We slightly abuse notation by using the shorthand TX when
referring to an element in P(n)(X ). Similarly, let TX,Y , TX|Y
and [TX,Y ]X denote a joint type of (X,Y ), conditional type of
X given Y and marginal type of X given TX,Y respectively.
Let T (TX) denote the set of all length n sequences with type
TX . We denote type of x by Tx, joint type of (x,y) by Tx,y,
and conditional type of x conditioned on y by Tx|y.

B. The Communication Setup

Consider the communication figure depicted in Fig. 1. Alice
aims to reliably send a message M to a remote receiver
Bob over an arbitrarily varying channel (AVC) controlled
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Fig. 1: The communication setup

by jammer James. The AVC is specified in terms of the
following: Alice’s input x ∈ X , James’s jamming state s ∈ S,
output alphabet y ∈ Y , Alice’s input constraint ΓX ⊆ P(X ),
James’ state constraint ΛS ⊆ P(S), and the state-deterministic
and memoryless channel law WY |X,S given in terms of the
function w(x, s). To simplify notation, we refer to this AVC
by A = (ΓX ,ΛS ,WY |X,S); here the alphabets X , S, Y and
the block length n of operation are implicit. We assume that
all alphabets are finite in size, and the sets ΓX ⊆ P(X ) and
ΛS ⊆ P(S) are convex. Furthermore, the AVC A is known to
all parties Alice, James and Bob; we describe each of these
entities now in more detail.
Alice’s encoder: We assume that Alice and Bob share com-
mon randomness K ∼ Unif{[2κ]} (i.e., a string K com-
prising κ bits, chosen uniformly at random from the set
[2κ]), but unknown to James. Given the message M = m
and shared randomness K = k, Alice uses an encoder
ψ : [2nR] × [2κ] → Xn to encode the message M = m into
a codeword x = ψ(m, k), and transmits x on the channel2; a
codeword x is feasible if satisfies the input constraint ΓX ,
i.e., x is such that Tx ∈ ΓX . Note that ΓX = P(X )
implies that Alice has an ‘unconstrained input’. A randomized
codebook C = {x = ψ(m, k) : m ∈ [2nR], k ∈ [2K ]}
comprises all such feasible codewords under the encoder ψ;
the rate of this code C is R. We note that a codebook
C = {x = ψ(m, k0) : m ∈ [2nR]}, for some k0 ∈ 2κ

corresponds to a deterministic codebook.
James’s Jammer: James chooses a (possibly random) jam-
ming state S so as to disrupt communication between Al-
ice and Bob. Apart from the AVC A, we assume that an
omniscient James knows the randomized code C, the chosen
message M = m as well as the transmitted codeword X;
crucially, however, James does not know the randomness K
shared between Alice and Bob. James’ jamming state S can
depend arbitrarily on everything that James knows. However,
jamming state should satisfy its state constraint ΛS ⊆ P(S),
in particular, S should be such that TS ∈ ΛS . James is said to
have an ‘unconstrained state’ when ΛS = P(S).
Channel law: The channel law W (n)(y|x, s) is specified in
terms of the memoryless distribution WY |X,S . In particular,
the probability W (n)(y|x, s) =

∏n
i=1WY |X,S(yi|xi, si); we

2We assume without loss of generality that 2nR is an integer.



assume that WY |X,S is state-deterministic, i.e., y = w(x, s)
for some fixed function w : X × S → Y .
Bob’s Decoder: Recall that Alice and Bob share randomness
K unknown to James; let K = k. Upon receiving the channel
output y ∈ Yn, Bob uses the decoder φ : Yn × [2K ] →
[2nR]∪{0} to output an estimate m̂ = φ(y, k) of message m.
Successful communication: Given any rate R randomized
code with encoder-decoder pair (ψ, φ), alternately called an
(n,R)-randomized code, its corresponding probability of error
error is given by

P (n)
e := max

m
max

s:Xn→Sn
PK(φ(Y,K) 6= m|M = m)

where the probability is over the shared string K. A rate R is
said to be achievable if given any ε > 0, there exists for every
n sufficiently large, an (n,R)-randomized code such that the
corresponding probability of error P (n)

e ≤ ε. The supremum
of the all achievable rates is defined as the randomized
coding capacity of the AVC A; we denote it by Cr(A). For
deterministic codes, achievable rate and deterministic coding
capacity are analogously defined; the latter is denoted by
Cd(A).

In this work, we consider the following class of
‘adversary-weakened’ AVCs.

Definition 1 (‘Adversary-weakened’ AVCs). A state-
deterministic AVC A = (ΓX ,ΛS ,WY |X,S(x, s)) is called an
‘‘adversary-weakened’ ’ AVC if Cr(A) > Cd(A). We denote
the class of all ‘adversary-weakened’ AVCs by AAW .

Remark 1. Most non-trivial AVCs of interest are
‘adversary-weakened’ AVCs where presence of shared
randomness between the encoder-decoder, unknown to the
adversary, allows communication at rates higher than when
such shared randomness is completely absent, viz., when only
deterministic codes are allowed (cf. [11] for an interesting
class of AVCs where Cd(A) < Cr(A), Cd(A) = 0). A simple
example of an AVC which is not ‘adversary-weakened’ is as
follows: let X = S = {0, 1}, Y = {0, 1, 2}, Γ = P(X ),
ΓX = P(S), and let y = w(x, s) be specified as follows:
y = x, if x = 0, and y = x + s, if x = 1. It can be easily
verified that this AVC is not an ‘adversary-weakened’ AVC.

Our interest in this work is the threshold of the amount
of shared randomness for achieving the randomized coding
capacity for ‘adversary-weakened’ AVCs.

III. MAIN RESULTS

We now state our main results. To begin, we define the
following:

Definition 2. Given an AVC A = (ΓX ,ΛS , w(x, s)), let

C̄r(A) := max
PX∈ΓX

min
PS|X :[PXPS|X ]S∈ΛS

I(X;Y ). (1)

Our main result is the characterization of the exact
amount of shared randomness between Alice and Bob so
as to achieve the randomized coding capacity for any
‘adversary-weakened’ AVC. In particular, we show that for

any ‘adversary-weakened’ AVC A ∈ AAW , exactly log(n)
independent and equiprobable bits of shared randomness be-
tween Alice and Bob are both necessary and sufficient to
achieve the randomized coding capacity Cr(A) for the AVC
A. Below, we state this result.

Theorem 3. For every ‘adversary-weakened’ AVC A ∈ AAW ,
shared randomness K comprising log(n) bits is both nec-
essary and sufficient for achieving its randomized coding
capacity Cr(A) = C̄r(A).

Toward proving this result, we first establish the sufficiency
of this condition in Theorem 4 below.

Theorem 4 (Achievability). Consider any
‘adversary-weakened’ AVC A ∈ AAW . Let ε > 0. Then,
for every n large enough, there exists an (n,R)-randomized
code with shared randomness K comprising κ ≤ (1 + ε) bits
where rate R = C̄(A)− ε.

The proof of this theorem appears in Section IV. Next, we
show that log(n) bits of shared randomness are necessary
for any randomized code to achieve the randomized coding
capacity for any ‘adversary-weakened’ AVC.

Theorem 5 (Converse). Let A ∈ AAW . Then, every sequence
of (n,R)-randomized codes with P

(n)
e → 0 as n → ∞

has rate R ≤ C̄(A). Furthermore, every capacity-achieving
sequence of (n,R)-randomized codes with R = C̄(A), com-
prises κ ≥ log(n) bits of shared randomness K.

We present the proof in Section V.

IV. PROOF OF THEOREM 4

Our achievability scheme uses deterministic list codes; we
begin by defining list codes formally.

Definition 6 (List code). An (n,N,L) deterministic list
code is a pair of mappings (ψL, φL), where encoder ψL :
{1, 2, · · · , N} → Xn and decoder φ : Yn → NL. The rate
of this code is R = 1

n log(NL ). For any (n,N,L) code with
encoder-decoder pair (ψL, φL), the corresponding error3 is
given by e(n) := maxm maxs:Xn→Sn I{Φ(y)63m}.A rate R is
achievable if there exists an infinite sequence of (n,N,L)
list codes of rate R with increasing block lengths n and
corresponding error e(n) = 0.

We now show that given any AVC A ∈ AAW , there exists
a sequence of deterministic list codes with rate R arbitrarily
close to C̄r(A)4.

Lemma 7. Given any ε > 0, there exists a deterministic list
code with rate R = C̄r(A)− ε, and list size L = 2 log(|Y|)

ε .

The proof uses the approach in [10]; the details can be found
in [13].

We now present an outline of the proof of achievability of
our main result in Theorem 4; we first describe the randomized

3Here I{E} denotes the indicator for event E.
4In fact, C̄r(A) also corresponds to the so-called list decoding capacity [12]

of A.



codebook construction and the concomitant encoding and
decoding maps, following which we discuss the probability
of error. See [13] for a detailed presentation.

Let ε > 0. Now fix a rate R = C̄r(A) − ε. Let PX be the
optimizing distribution in (1).
Key generation: Given ε > 0, let β := 3ε

4 < ε, and l := d 2
ε e.

Now we define

γ :=

⌈
1 + β

1 + l
log(n)

⌉
,

where γ ∈ Z+. We utilize γ(l + 1) bits; it can be verified
that γ(l + 1) ≤ (1 + ε) log(n). Consider a field F of size
2γ . Consider an integer n ≥ n0(ε) := 2

4ε+8

ε2 , and generate
γ(l+ 1) equiprobable and independent bits. This collection of
bits define the shared key K. We now split K into (l + 1)
equal-sized chunks, i.e., K = (K0,K1, · · · ,Kl), where each
chunk Ki ∈ F, i = 0, 1, · · · , l. K is now revealed to Alice
and Bob (though not to James).
Codebook construction: Let

R′ := R+
(1 + β) log(n)

(l + 1)n
. (2)

This choice of R′ is explained later in the description of
the encoder. Note that R < R′ < Cr(A), where R′ → R
as n → ∞. Lemma 7 guarantees that that there exists a
deterministic list code with rate R′ and list size L = 2 log(|Y|)

ε ;
let CL = (ψL, φL) denote such a list code. We use CL and
describe the encoding and decoding in our randomized code.
Encoder: The encoder observes the message M = m and key
K (shared with decoder). It proceeds as follows:
• Given message m ∈ [2nR], the encoder first cal-
culates its field-F representation m(F); here m(F) :=

(m
(F)
1 ,m

(F)
2 , · · · ,m(F)

c ), where c :=
⌈
nR
γ

⌉
. and m

(F)
i ∈ F,

∀i = 1, 2, · · · , c.
• Next, m(F) ∈ Fc is arranged in a l-dimensional square matrix
of dimension d :=

⌈
c

1
l

⌉
. Here each matrix entry is given by

m
(F)
(i1,ı2,··· ,il), where ij ∈ [d] for l = 1, 2, · · · , l.
• The encoder now calculates a polynomial hash for the
message m using shared key K given by

HK(m) := K0 +

d∑
i1=1

d∑
i2=1

· · ·
d∑

il=1

Ki1
1 K

i2
2 · · ·K

il
l m

(F)
(i1,ı2,··· ,il),(3)

using the unique collection {m(F)
(i1,i2,··· ,il)} corresponding to

message m. Here HK(m) ∈ F, ∀m.
• The encoder now determines the concatenated message be
M̄ = (m,HK(m)); M̄ ∈ [2nR

′
], where R′ is given in (2).

The encoder then transmits X = ψL(m̄).
Decoder: The decoder knows the shared key K and observes
channel output y. It proceeds as follows:
• Using the list decoder φL : Yn → [2nR

′
]L, the decoder

outputs the following list of ‘likely’ candidates:

L(y) := {i ∈ [2nR
′
] : Txi,y ∈ T n

(
[PXTS|XWY |X,S ]X,Y

)
,

some TS|X s.t. [PXTS|X ]S ∈ T n(S) ∩ ΛS}.

• Let the collection { ˆ̄m = (m̂, ĥ)} comprise this list L(y).
If there exists a unique ˜̄m = (m̃, h̃) ∈ L(y), such that
(m̃, h̃) is consistent w.r.t. the observed shared key K, i.e.,
h̃ = HK(m̃), then the decoder outputs the corresponding
message m̃ ∈ [2nR] as the estimate. Otherwise, it outputs
m̃ = 0 to declare error.
Probability of error analysis: We present an overview of the
probability of error analysis. Note that decoding error occurs
if at least one of the following events occur:
(a) list L(y) output by the decoder does not contain m̄ =
(m,HK(m)) which corresponds to the actual message m.
(b) there exists m̄′ ∈ L(y), m̄′ = (m′, HK(m′)), where
m′ 6= m and HK(m′) is consistent with the observed key
K (cf. (3)).
• We analyse a stronger adversary James by revealing to it
the hash HK(m) corresponding to the message m; recall that
James already knows m, the codebook and the transmitted
codeword X.
• Recall C = (ψL, φL) from earlier; it immediately follows
that the probability of the error event in part (a) is zero.
• The analysis of the second part is considerably more
involved. To begin, we further strengthen the adversary by
allowing it to induce ‘arbitrary’ lists L(y) at the decoder as
long as the actual message m̄ = (m,HK(m)) ∈ L(y) and
the list size |L(y)| ≤ 2 log(|Y|)

ε . Henceforth, we analyse such
a modified list L(y).
• Thus, error occurs if some m̄′ = (m′, HK(m′)) ∈ L(y),
m 6= m, with the corresponding hash (consistent with K)
HK(m′) = HK(m) (recall that m̄ ∈ L(y)). To bound the
corresponding error probability, we leverage the fact that even
under James’ complete knowledge (which includes the hash
HK(m)), there is still ‘enough’ uncertainty about the shared
key K. Recall that K = (K0,K1, · · · ,Kl); we show in [13,
] that (K1,K2, · · · ,Kl), conditioned the James’ entire knowl-
edge, is uniformly distributed. We then bound the probability
of the event HK(m′) = HK(m), m′ 6= m, conditioned on
James’ knowledge. Note that this corresponds determining the
probability that some polynomial in (K1,K2, · · · ,Kl) evalu-
ates to zero (cf. (3); we use the Schwartz-Zippel lemma [14],
[15] to bound this probability.
• As |L(y)| ≤ 2 log(|Y|)

ε , ∀y, there can exist at most 2 log(|Y|)
ε

such candidates m̄′. We taking a union bound to obtain an
upper bound on the probability of error for part (b).
• This gives us an overall probability of error P (n)

e ≤ c1n−c2 ,
where c1, c2 > 0 and independent of n, which is vanishing
as n→∞. As ε > 0 is arbitrary, this completes the proof of
achievability.

V. PROOF OF CONVERSE FOR THEOREM 4

We prove a converse result under the average probability
of error criterion instead of the maximum probability of
error criterion. Given an (n,R)-randomized code, we define
the corresponding average probability of error by P

(n)
e :=

1
2nR

∑2nR

m=1 maxs:Xn→Sn PK(φ(Y,K) 6= m|M = m). For
the rest of this section, we assume P (n)

e to denote this average



probability of error. Furthermore, we assume a ‘weaker’ adver-
sary, where (unlike in the problem description) the adversary
knows only the transmitted codeword and the randomized
code, but not the message chosen; these assumptions result
in a ‘stronger’5 converse.

Consider any sequence (with increasing block length), say
{Cn}, of (n,R)-randomized codes. We prove the following:

1) If {Cn} is such that the corresponding P (n)
e → 0 as n→

∞, then, its rate R ≤ Cr(A); observe that this bound
on the rate holds irrespective of the amount of shared
randomness. This proof is along the lines of the converse
of the standard discrete memoryless channel [16] with
a few modification; we defer the details to [13].

2) Let the sequence of codes {Cn} be capacity-achieving,
i.e., let R = Cr. Then, the shared randomness K
comprises at least log(n) independent and equiprobable
bits, i.e., κ ≥ log(n).

Our proof for the second part is based upon the approach
in [7]; we show the necessity of log(n) bits of shared ran-
domness through a proof via a contradiction. In particular,
given A ∈ AAW , let us consider any sequence of (n,R)-
randomized codes {Cn}, each comprising κ < log(n) bits of
shared randomness, with R = Cr(A) and average probability
of error P (n)

e < δ. In our proof, we construct a feasible (w.r.t.
the state constraint set ΛS) jamming strategy which results in
the corresponding average probability of error being at least δ,
i.e., P (n)

e ≥ δ, thereby making the contradiction (recall that we
assumed P

(n)
e < δ) and establishing the necessity of log(n)

bits of shared randomness.
We now present an overview of the proof and emphasize

the key ideas; the detailed proof is given in [13].
•We first determine the set U ⊆ Xn comprising all codewords
for the given randomized code (cf. [13, Definition 13]).
• Within this set, we seek pairs of confusable codewords
(see [13, Definition 17]). Roughly speaking, two codewords
x, x′ are said to be confusable if there exist corresponding
feasible jamming states s(x), s′(x′) (i.e., Ts, Ts′ ∈ ΛS) which
result in an identical channel output y, i.e., y = w(x, s) =
w(x′, s′); observe that every decoder is confused under such
a y (both x,x′ are equally likely to have caused y).
• A key part of the proof involves showing that there exist
‘many’ pairs of ‘confusable codewords’ (cf. [13, Lemma 20]);
furthermore, such confusable pairs occur in ‘many’ sub-
codebooks (each instantiated by K) in the randomized code
ensemble (cf. [13, Lemma 16]). The proof of [13, Lemma 20]
crucially uses the fact that the underlying channel corresponds
to an ‘adversary-weakened’ AVC, where Cd(A) < Cr(A).
• Given the randomized codebook, say C, we now propose
the following jamming attack for James: for every pair of
confusable codewords x,x′ ∈ C, James chooses corresponding
state vectors s, s′ such that w(x, s) = w(x′, s′) = y, for some

5This is because derived bounds on rate and the size of the common
randomness under the proposed ‘weakening’ of the adversary as well as the
error criterion continue to hold even when the model is restored back to one
in the problem description.

y ∈ Yn; note that we are guaranteed that there exist such
feasible s, s′ and output y. For codewords x ∈ C, which do
not comprise any confusable pair, James chooses s = 0. This
determines James’ strategy via the collection {s(x);x ∈ C}.
• As every confusable pair causes a decoding error and since
a ‘large’ fraction of such pairs of confusable codewords occur,
a calculation (cf. [13]) then shows that the average probability
of error is at least δ, i.e., P (n)

e ≥ δ. This establishes the
contradiction.

VI. CONCLUSION

We study the communication problem in the presence of
an adversary when the encoder-decoder can share randomness
which is not revealed to the adversary. Randomized coding
capacity is the optimum throughput when shared random-
ness of arbitrary size is available. We characterize the exact
threshold on the amount of shared randomness required for
realizing the randomized coding capacity for a large class
of ‘adversary-weakened’ AVCs. In particular, we show that
log(n) bits of shared randomness are necessary as well as
sufficient to achieve randomized coding capacity for any
‘adversary-weakened’ AVC.
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