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Noiseless quantum theory
We have covered this in the course

I We assume that all of the states can be perfectly prepared
and all unitaries can be perfectly implemented.

I This is usually not the case in real life.

I For a more complete theory we also need to consider what
happens if the above assumptions are violated.

I It also gives rise to interesting results in its own right.
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What is the density matrix?

I Defined as the following:

ρ :=
∑
i∈X

pX (i) |ψi 〉 〈ψi |

I |Ψi 〉s are orthogonal and pX (x) is a probability distribution
with support X .

I Treat it as an ensemble of quantum states. In general a single
density matrix could correspond to more than one ensemble.
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Properties of Density Matrices
Proofs easily follow from the definition and using the definitions for noiseless quantum
theory

I Tr{ρ} = 1

I Trace is basis invariant. We can define ρ without reference to
a basis.

I ρ is Hermitian

I ρ is positive semi-definite

I Evolution Given a unitary U the evolved density matrix is
ρ′ = UρU†

I Measurement Given a projection operator Πi the
post-measurement state is given by ΠiρΠi

Tr{ρΠi}



Properties of Density Matrices
Proofs easily follow from the definition and using the definitions for noiseless quantum
theory

I Tr{ρ} = 1
I Trace is basis invariant. We can define ρ without reference to

a basis.

I ρ is Hermitian

I ρ is positive semi-definite

I Evolution Given a unitary U the evolved density matrix is
ρ′ = UρU†

I Measurement Given a projection operator Πi the
post-measurement state is given by ΠiρΠi

Tr{ρΠi}



Properties of Density Matrices
Proofs easily follow from the definition and using the definitions for noiseless quantum
theory

I Tr{ρ} = 1
I Trace is basis invariant. We can define ρ without reference to

a basis.

I ρ is Hermitian

I ρ is positive semi-definite

I Evolution Given a unitary U the evolved density matrix is
ρ′ = UρU†

I Measurement Given a projection operator Πi the
post-measurement state is given by ΠiρΠi

Tr{ρΠi}



Properties of Density Matrices
Proofs easily follow from the definition and using the definitions for noiseless quantum
theory

I Tr{ρ} = 1
I Trace is basis invariant. We can define ρ without reference to

a basis.

I ρ is Hermitian

I ρ is positive semi-definite

I Evolution Given a unitary U the evolved density matrix is
ρ′ = UρU†

I Measurement Given a projection operator Πi the
post-measurement state is given by ΠiρΠi

Tr{ρΠi}



Properties of Density Matrices
Proofs easily follow from the definition and using the definitions for noiseless quantum
theory

I Tr{ρ} = 1
I Trace is basis invariant. We can define ρ without reference to

a basis.

I ρ is Hermitian

I ρ is positive semi-definite

I Evolution Given a unitary U the evolved density matrix is
ρ′ = UρU†

I Measurement Given a projection operator Πi the
post-measurement state is given by ΠiρΠi

Tr{ρΠi}



Properties of Density Matrices
Proofs easily follow from the definition and using the definitions for noiseless quantum
theory

I Tr{ρ} = 1
I Trace is basis invariant. We can define ρ without reference to

a basis.

I ρ is Hermitian

I ρ is positive semi-definite

I Evolution Given a unitary U the evolved density matrix is
ρ′ = UρU†

I Measurement Given a projection operator Πi the
post-measurement state is given by ΠiρΠi

Tr{ρΠi}



Pure State v/s Mixed State

I Purity
P(ρ) = Tr{ρ2}

I A pure state has a density matrix given by |ψ〉 〈ψ| where |ψ〉
is a unit vector. Purity = 1

I A ensemble whose density matrix cannot be written like this is
called a mixed state. Purity is strictly less than 1.

I Therefore, Purity is a measure of noisiness.
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Ensemble of Ensembles
One more step of uncertainty

I An ensemble of density matrices. It has a density matrix
representation given by

ρ =
∑
i∈X

pX (i)ρi



Composite States

I For multiple Hilbert spaces, simple tensor product analogues
to the results discussed also hold. For example, the joint
density matrix for two independent systems with density
matrices ρ and σ respectively is given by ρ⊗ σ

I Definitions of product states, separable states and entangled
states are similar to those used for the composite noiseless
case.

I A partial trace is also defined, to consider a subset of multiple
Hilbert spaces.
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The Classical-Quantum Ensemble

We generalise one final time to the Classical-Quantum Ensemble,
given by

ρ =
∑
x∈X

pX (x) |x〉 〈x |X ⊗ ρ
X
A

The |x〉s form an orthonormal basis It is called Classical-Quantum
because it is like a classical state tensored with a quantum state.
Why is it useful?
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Some definitions

I Let H be a Hilbert space.

I L(H) is the space of all linear operators acting on H
I D(H) is the space of all density operators acting on H
I L(HA,HB) is the space of all linear operators from HA to HB

I N is a convex linear map that takes density operators in HA

to density operators in HB

I We can uniquely extend such a map to all linear operators
from HA to HB .
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The Quantum Channel
Axiomatic Approach to Quantum Evolution

I We call this last map a Quantum Channel.

I On physical grounds we postulate certain properties of the
channel.

I The channel must be linear.
I The channel must be completely positive.IR ⊗M preserves

positive semi-definite operators on L(H) for a reference system
R of arbitrary size.

I The channel must preserve trace.
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Choi-Kraus Theorem

A map in L(HA,HB) is a quantum channel iff it has a Choi Kraus
Decomposition.

N (XA) =
d−1∑
l=0

VlXAV
†
l

where
XA ∈ L(HA)

Vl ∈ L(HA,HB)

d ≤ dim(HA)dim(HB)

and
d−1∑
l=0

V †Vl = IA

The Choi operator
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Summary

I We have seen the density matrix formalism as a way to think
about noise in quantum systems.

I We saw the most general form of a quantum channel that
allows us to mathematically formalise the notion of a
quantum evolution.

I Outlook
I The purified theory, that allows us to consider noise as an

entanglement effect.
I The resource framework, that allows us to prove the optimality

of certain quantum protocols.
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